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Abstract
Harmonic maps from R

2 or one-connected domain � ⊂ R
2 into GL(m, C) and

U(m) are treated. The GBDT version of the Bäcklund–Darboux transformation
is applied to the case of the harmonic maps and a new and simple algebraic
procedure to construct new harmonic maps from the initial ones is given, using
some methods from system theory. A new general formula on the GBDT
transformations of the Sym–Tafel immersions is derived. A new class of the
unitary harmonic maps with asymptotics along one line essentially different
from the asymptotics in all other directions, similar in certain ways to line
solutions, is obtained explicitly and studied.

PACS numbers: 05.45.Yv, 02.30.Ik, 02.10.Yn

1. Introduction

Harmonic maps are actively studied in mathematical physics, differential geometry and soliton
theory, and the famous Bäcklund–Darboux transformation can be fruitfully used for this
purpose. Among various physical applications of harmonic maps are, in particular, harmonic
map ansatz for skyrmions, isometric embeddings of the spacetime, problems of solid-state
physics and important connections with the other integrable equations of mathematical physics
(see [3, 6, 10, 31] and references therein). Since the original works of Bäcklund and Darboux
various interesting versions of the Bäcklund–Darboux transformation have been introduced
(see, for instance, [4, 5, 7, 8, 11–13, 26–28, 32]). In many of the references above, Bäcklund–
Darboux transformations have been successfully applied to the studies of harmonic maps.

In our paper, we shall consider harmonic maps from R
2 or one-connected domain � ⊂ R

2

into GL(m, C) and U(m). Here GL(m, C) is the Lie group of m×m invertible matrices with
the complex-valued entries, and U(m) is its subgroup of unitary matrices. Correspondingly
the map u(x, y) ((x, y) ∈ R

2) is called harmonic if it satisfies the Euler–Lagrange equation:

∂((∂u)u−1) + ∂((∂u)u−1) = 0,

(
∂ = 1

2

(
∂

∂x
− i

∂

∂y

)
, ∂ = 1

2

(
∂

∂x
+ i

∂

∂y

))
. (1.1)

0305-4470/06/5015379+12$30.00 © 2006 IOP Publishing Ltd Printed in the UK 15379

http://dx.doi.org/10.1088/0305-4470/39/50/006
mailto:al_sakhnov@yahoo.com
http://stacks.iop.org/JPhysA/39/15379


15380 A Sakhnovich

We apply a version of the Bäcklund–Darboux transformation (so-called GBDT), developed
in [15–20] and some other works of the author, to the case of the harmonic maps. Thus a
new and simple algebraic procedure to construct new harmonic maps from the initial ones is
given, using some methods from the system theory. As a result a new class of the unitary
harmonic maps with asymptotics along one line essentially different from the asymptotics in
all other directions, similar in certain ways to line solutions, is obtained explicitly and studied.
In particular, the absolute value of the non-diagonal entry (̃u)21 for ũ, belonging to the family
of the harmonic maps into U(2) constructed in example 3.1, is non-decaying (even constant)
along one line and decays exponentially in other directions. Compare with the characteristic
properties of the line solutions discussed, for instance, in [29]. It is of interest that our approach
allows us to include into consideration Darboux matrices with the high-order poles. (The case
of a Darboux matrix with a second-order pole is studied in more detail in example 3.3.) A
new formula on the GBDT transformations of the Sym–Tafel immersions is derived, which
is true also for the much more general class of GBDT transformations, treated in [18]. The
connections between our results and GBDT are presented in the following scheme:

GBDT:
general case

GBDT  for
Sym-Tafel immersions

GBDT  for
harmonic 
maps

Restrictions:
maps  into
U(m), SU(m)

Explicit  solu-
tions, examples,
line solutions

GBDT version of the Bäcklund–Darboux transformation for harmonic maps is constructed
in section 2. In particular, GBDT transformations of the Sym–Tafel immersions are given in
proposition 2.8. Explicit solutions are treated in section 3.

2. GBDT version of the Bäcklund–Darboux transformation

Suppose u and its partial derivatives are continuously differentiable and u is a harmonic map
into GL(m, C). Then Euler–Lagrange equation (1.1) is equivalent [14] to the compatibility
condition

∂G(x, y, λ) − ∂F (x, y, λ) + [G(x, y, λ), F (x, y, λ)] = 0, ([G,F ] := GF − FG)

(2.1)

for system

∂w(x, y, λ) = G(x, y, λ)w(x, y, λ), ∂w(x, y, λ) = F(x, y, λ)w(x, y, λ), (2.2)

where

G(x, y, λ) = −(λ − 1)−1q(x, y), F (x, y, λ) = −(λ + 1)−1Q(x, y), (2.3)

q(x, y) = (∂u(x, y))u(x, y)−1, Q(x, y) = −(∂u(x, y))u(x, y)−1. (2.4)

Without loss of generality assume (0, 0) ∈ �. To construct GBDT fix an integer n > 0 and five
parameter matrices A1, A2, S(0, 0),�1(0, 0) and �2(0, 0), where A1, A2, S are n×n matrices,
and �1,�2 are n × m matrices. We require also that ±1 �∈ σ(Ak) (k = 1, 2, σ—spectrum)
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and the identity

A1S(0, 0) − S(0, 0)A2 = �1(0, 0)�2(0, 0)∗ (2.5)

holds. Now introduce matrix functions �1(x, t) and �2(x, t) using their values at (x, y) =
(0, 0) and linear differential equations

∂�1 = (A1 − In)
−1�1q, ∂�1 = (A1 + In)

−1�1Q, (2.6)

∂�∗
2 = −q�∗

2(A2 − In)
−1, ∂�∗

2 = −Q�∗
2(A2 + In)

−1, (2.7)

where In is the n × n identity matrix. Similar to the case of the differentiation in real-valued
arguments in [17, 18] the compatibility of both systems (2.6) and (2.7) follows from the
compatibility condition (2.1).

Next, introduce m × m matrix function S(x, y) via S(0, 0) and the partial derivatives:

∂S = −(A1 − In)
−1�1q�∗

2(A2 − In)
−1, ∂S = −(A1 + In)

−1�1Q�∗
2(A2 + In)

−1.

(2.8)

From formulae (2.1) and (2.6)–(2.8), it follows that ∂∂S = ∂∂S, i.e., Sxy = Syx , where
Sx = ∂S

∂x
= ∂S + ∂S, Sy = ∂S

∂y
= i(∂S − ∂S). Thus the entries of Sx and Sy form potential

fields and so equations (2.8) are compatible.
According to formulae (2.6)–(2.8) we have ∂(A1S − SA2) = ∂(�1�

∗
2) and ∂(A1S −

SA2) = ∂(�1�
∗
2), which in view of the identity (2.5) implies the more general identity

A1S(x, y) − S(x, y)A2 = �1(x, y)�2(x, y)∗. (2.9)

Assume now that S is invertible and consider well known in the system theory transfer matrix
function represented in the Lev Sakhnovich form [21–23]:

wA(x, y, λ) = Im − �2(x, y)∗S(x, y)−1(A1 − λIn)
−1�1(x, y). (2.10)

The matrix function wA is invertible [21]:

wA(x, y, λ)−1 = Im + �2(x, y)∗(A2 − λIn)
−1S(x, y)−1�1(x, y). (2.11)

Formula (2.11) easily follows from the identity (2.9).
From the main theorem in [17, p 1253] it follows that wA is the so-called Darboux matrix

function.

Proposition 2.1. Suppose m×m matrix function u and its partial derivatives are continuously
differentiable and relations (1.1), (2.4) and (2.5)–(2.8) are valid. Then in the points of
invertibility of S we have

∂wA(x, y, λ) = G̃(x, y, λ)wA(x, y, λ) − wA(x, y, λ)G(x, y, λ), (2.12)

∂wA(x, y, λ) = F̃ (x, y, λ)wA(x, y, λ) − wA(x, y, λ)F (x, y, λ), (2.13)

where wA is given in (2.10), G and F are defined using (2.3),

G̃(x, y, λ) = −(λ − 1)−1q̃(x, y), F̃ (x, y, λ) = −(λ + 1)−1Q̃(x, y), (2.14)

q̃(x, y) = wA(x, y, 1)q(x, y)wA(x, y, 1)−1, (2.15)

Q̃(x, y) = wA(x, y,−1)Q(x, y)wA(x, y,−1)−1. (2.16)

Suppose w is an m × m invertible matrix function satisfying formulae (2.2)–(2.4). According
to equations (2.2) and formula (2.3) the equalities

∂w(x, y, 0) = q(x, y)w(x, y, 0), ∂w(x, y, 0) = −Q(x, y)w(x, y, 0) (2.17)
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hold. So in view of equalities (2.4) one can normalize w so that

w(x, y, 0) = u(x, y), (2.18)

where u satisfies the Euler–Lagrange equation (1.1). Normalized in this way matrix function
w(x, y, λ) is called an extended (and corresponding to u) solution of the Euler–Lagrange
equation or extended frame.

Theorem 2.2. Suppose u satisfies the Euler–Lagrange equation (1.1), the conditions of
proposition 2.1 are fulfilled, and w is an extended corresponding to u solution. Then the
matrix function

ũ(x, y) := wA(x, y, 0)u(x, y) (2.19)

also satisfies the Euler–Lagrange equation. Moreover the matrix function

w̃(x, y, λ) := wA(x, y, λ)w(x, y, λ). (2.20)

is an extended solution such that w̃(x, y, 0) = ũ(x, y).

Proof. According to formulae (2.2) and (2.20) and to proposition 2.1 we have

∂w̃(x, y, λ) = G̃(x, y, λ)w̃(x, y, λ), ∂w̃(x, y, λ) = F̃ (x, y, λ)w̃(x, y, λ). (2.21)

From equations (2.21) it follows that the compatibility condition

∂G̃(x, y, λ) − ∂F̃ (x, y, λ) + [G̃(x, y, λ), F̃ (x, y, λ)] = 0 (2.22)

is fulfilled. Condition (2.22) can be rewritten in the form

(λ + 1)∂q̃ − (λ − 1)∂Q̃ + [Q̃, q̃] = 0,

i.e., the coefficients of the polynomial in λ on the left-hand side of the last equation turn to
zero. In other words we have

∂q̃(x, y) = ∂Q̃(x, y) = − 1
2 [Q̃(x, y), q̃(x, y)]. (2.23)

From formulae (2.18)–(2.20) it follows that w̃(x, y, 0) = ũ(x, y). Therefore taking into
account formulae (2.14) and (2.21) we obtain

∂ũ(x, y) = q̃(x, y)̃u(x, y), ∂ũ(x, y) = −Q̃(x, y)̃u(x, y). (2.24)

Hence in view of formula (2.23) the matrix function ũ satisfies (1.1). Now we see that
according to formulae (2.14), (2.21) and (2.24) w̃ is an extended solution corresponding
to ũ. �

Theorem 2.2 presents a GBDT method to construct harmonic maps ũ into GL(m, C) and
corresponding extended solutions. According to formula (2.10) the choice of the eigenvalues
of A1 defines simple and multiple poles of the Darboux matrix wA, and in this way our result
is related to the interesting papers [2, 9, 30] on the pole data for the soliton solutions. Note
that we do not require parameter matrix A1 to be similar to diagonal (it may have an arbitrary
Jordan structure).

Consider the case uu∗ = u∗u = Im, i.e., u is a harmonic map into U(m). Then we have
uxu

∗ + uu∗
x = uyu

∗ + uu∗
y = 0. Therefore from formula (2.4) it follows that

q∗ = 1
2

(
uu∗

x + iuu∗
y

) = − 1
2

(
uxu

∗ + iuyu
∗) = Q. (2.25)

Put now A1 = −A∗
2 = A (i.e., assume A1 = −A∗

2). Then, taking into account formulae (2.6),
(2.7) and (2.25) we can assume �2 = �1 and denote �1 by �. Further in this section we
assume

A1 = −A∗
2 = A, �1(x, t) = �2(x, t) = �(x, t), and S(0, 0) = S(0, 0)∗. (2.26)
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Hence, using formulae (2.8) and (2.25) we obtain (∂S)∗ = ∂S, and so Sx = S∗
x , Sy = S∗

y . The
last equality in formulae (2.26) now implies

S(x, y) = S(x, y)∗. (2.27)

Corollary 2.3. Suppose the equality u∗ = u−1, the conditions of theorem 2.2 and assumptions
(2.26) are true. Then we have

ũ(x, y)∗ = ũ(x, y)−1, q̃(x, y)∗ = Q̃(x, y). (2.28)

Proof. Identity (2.9) and definition (2.10) now take the form

AS(x, y) + S(x, y)A∗ = �(x, y)�(x, y)∗, (2.29)

wA(x, y, λ) = Im − �(x, y)∗S(x, y)−1(A − λIn)
−1�(x, y). (2.30)

Formula (2.11) takes the form

wA(x, y, λ)−1 = Im − �(x, y)∗(A∗ + λIn)
−1S(x, y)−1�(x, y). (2.31)

In view of formulae (2.27), (2.30) and (2.31), we derive

wA(x, y, λ)−1 = wA(x, y,−λ)∗. (2.32)

In particular, we have wA(x, y, 0)−1 = wA(x, y, 0)∗ and the first equality in formula
(2.28) follows from the definition of ũ. Moreover, according to formula (2.32) we have
wA(x, y,−1)−1 = wA(x, y, 1)∗ and so the second equality in formulae (2.28) follows from
formulae (2.15), (2.16) and (2.25). �

Remark 2.4. The uniton solutions have been introduced in the seminal paper [28]. Put

A1 = aIn, A2 = bIn, π = (a − b)−1�∗
2S

−1�1. (2.33)

We shall derive some relations for π to compare with the limiting uniton case. According to
(2.9) and (2.33) we easily obtain

π2 = (a − b)−2
(
�∗

2S
−1A1�1 − �∗

2A2S
−1�1

) = π, (2.34)

i.e., π(x, y) is a projector. From (2.7) and (2.8) it follows that

∂
(
�∗

2S
−1

) = −q̃�∗
2S

−1(A2 − In)
−1. (2.35)

Hence, taking into account (2.6) we have

∂
(
�∗

2S
−1�1

) = −q̃�∗
2S

−1(A2 − In)
−1�1 + �∗

2S
−1(A1 − In)

−1�1q. (2.36)

In view of (2.10), (2.11), (2.15) and (2.33), we obtain

q̃ =
(

Im − a − b

a − 1
π

)
q

(
Im +

a − b

b − 1
π

)
. (2.37)

Using (2.33), (2.34) and (2.37) rewrite (2.36) as

∂π = −(b − 1)−1 a − 1

b − 1

(
Im − a − b

a − 1
π

)
qπ + (a − 1)−1πq. (2.38)

When a = a, b = −a, we can assume �1 = �2, S = S∗, i.e., π = π∗ is an orthogonal
projector and

∂π = 1 − a

(a + 1)2

(
Im − 2a

a − 1
π

)
qπ + (a − 1)−1πq. (2.39)
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The so-called singular Bäcklund transformation that transforms unitons into unitons deals
with the case a → −1. In this case, we have (a + 1)−1 → ∞, and so (2.39) implies
(Im − π)qπ = 0 (see [28] and formula (5.130) [8]). Similar transformations are possible for
the following equation:

∂
(
�∗

2S
−1�1

) = −Q̃�∗
2S

−1(A2 + In)
−1�1 + �∗

2S
−1(A1 + In)

−1�1Q.

It is of interest to consider harmonic maps into SU(m). For that purpose introduce the
notion of minimal realization. Any rational m×m matrix function ϕ that tends to D at infinity
can be presented in the form

ϕ(λ) = D − C(A − λIr)
−1B, (2.40)

where D is an m × m matrix, C is an m × r matrix, B is an r × m matrix, and A is an r × r

matrix, r � 0, and the case r = 0 corresponds to ϕ ≡ D. This type representation is called a
realization in system theory.

Definition 2.5. Realization (2.40) is called minimal if the order r of A is the minimal possible.
This order is called the McMillan degree of ϕ.

Realization remains minimal under small perturbations of A,B, C.

Theorem 2.6. Suppose the conditions of corollary 2.3 are fulfilled, σ(A) ∩ σ(−A∗) = ∅, and
realization (2.30) is minimal for some (x0, y0) ∈ �. Then for each (x, y) ∈ � we have

det wA(x, y, λ) =
n∏

k=1

λ + ak

λ − ak

, (2.41)

where {ak} are the eigenvalues of A taken with their algebraic multiplicity.

Proof. It is well known that as σ(A) ∩ σ(−A∗) = ∅ and (2.30) is a minimal realization
of wA(x0, y0, λ), so det wA(x0, y0, λ) has poles in all the eigenvalues of A and only there.
Moreover, if det D �= 0, then the McMillan degrees of ϕ and ϕ−1 coincide. Thus (2.31)
is a minimal realization of wA(x0, y0, λ)−1. Hence det wA(x0, y0, λ)−1 has poles in all the
eigenvalues of −A∗ and only there. Therefore, if all the eigenvalues of A are simple we obtain

det wA(x0, y0, λ) =
n∏

k=1

λ + ak

λ − ak

. (2.42)

If A has multiple eigenvalues we prove (2.42) using small perturbations of A (and
corresponding perturbations of S so that the identity (2.29) preserves). Finally, note that
det wA(x, y, λ) = ∏r

k=1
λ−âk

λ−ak
for each (x, y) with possible arbitrariness in the choice of the

set of eigenvalues ak of A and âk of −A∗. Taking into account that wA is also continuous we
derive (2.41) from (2.42). �

The next corollary is immediate.

Corollary 2.7. Suppose the conditions of theorem 2.6 are fulfilled, det(iA) ∈ R and u ∈
SU(m). Then we have ũ ∈ SU(m).

In the framework of his theory of ‘soliton surfaces’ A Sym associates with integrable
nonlinear systems the corresponding λ-families of immersions

R(x, y, λ) = w(x, y, λ)−1 ∂

∂λ
w(x, y, λ), (2.43)



Harmonic Maps and GBDT 15385

where w are extended solutions [25]. On the other hand, our version of the Darboux matrix,
which can be used in numerous important cases, including harmonic maps treated in this
section, admits representation (2.10), where dependence on λ is restricted to the resolvent
(A1−λIn)

−1. Thus wA is easily differentiated in λ. The next proposition expresses immersions
generated by GBDT in terms of �1, �2 and S.

Proposition 2.8. Suppose extended solution w̃ is given by equality (2.20), where Darboux
matrix wA admits representation (2.10) and identity (2.9) holds. Then immersion R̃ :=
w̃−1 ∂

∂λ
w̃ admits representation

R̃ = R − w−1�∗
2(A2 − λIn)

−1S−1(A1 − λIn)
−1�1w. (2.44)

Proof. From (2.20) it easily follows that

R̃ = R + w−1w−1
A

(
∂

∂λ
wA

)
w. (2.45)

According to (2.10) we have

∂

∂λ
wA(x, y, λ) = −�2(x, y)∗S(x, y)−1(A1 − λIn)

−2�1(x, y). (2.46)

Taking into account (2.9), (2.11) and (2.46) one obtains

w−1
A

∂

∂λ
wA = ∂

∂λ
wA − �∗

2(A2 − λIn)
−1S−1�1�

∗
2S

−1(A1 − λIn)
−2�1

= ∂

∂λ
wA −�∗

2(A2 −λIn)
−1S−1((A1 −λIn)S −S(A2 −λIn))S

−1(A1 −λIn)
−2�1

= −�∗
2(A2 − λIn)

−1S−1(A1 − λIn)
−1�1. (2.47)

Substitute now (2.47) into (2.45) to obtain (2.44). �

Proposition 2.8 can be used to construct conformal CMC immersions.

3. Explicit solutions

For the simple seed solutions (see, for instance, solutions given by formulae (3.1) and (3.32))
equations (2.6) and (2.29) can usually be solved explicitly, so that equalities (2.19) and (2.30)
provide us with the explicit expressions for harmonic maps. In this section, we consider
several examples in greater detail. First similar to [8] we put m = 2 and take the most simple
seed solution of (1.1):

u(x, y) = e(τz−τz)j ∈ U(2), z = x + iy, τ �= 0, j =
[

1 0
0 −1

]
. (3.1)

Transformations of this seed solution are treated in examples 3.1–3.3. Example 3.4 deals with
the arbitrary m and seed solution of the form (3.32). It is of interest in examples 3.1 and 3.3
that asymptotics of the constructed maps differs in one particular direction and non-diagonal
entries tend to zero, except, possibly, in this direction. (See relations (3.9), (3.11), (3.28) and
(3.31).)

For u of the form (3.1) using (2.4) we obtain

q(x, y) = −τj, Q(x, y) = −τj. (3.2)

Partition the matrix function � into columns

�(x, y) = [	1(x, y) 	2(x, y)], �(0, 0) = [f1 f2]. (3.3)
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Then according to (2.6), (2.26) and (3.2) we have

	1(x, y) = exp(−τz(A + In)
−1 − τz(A − In)

−1)f1, (3.4)

	2(x, y) = exp(τz(A + In)
−1 + τz(A − In)

−1)f2. (3.5)

Consider now the case n = 1, A = a (a �= ±1, a �= −a), f1, f2 �= 0. Recall that the
1-soliton solution treated in [8, formulae (5.101) and (5.102)] had the following behaviour on
the lines z = x + iy = µt (µ ∈ C, µ �= 0,−∞ < t < ∞):

ũ = gu, g(x, y) = c± e|kt |(I2 + o(1)), for t → ±∞, c± ∈ R. (3.6)

Our next example proves quite different.

Example 3.1. The GBDT transformation ũ of the seed solution is given via formula (2.19):

ũ(x, y) = wA(x, y, 0)u(x, y),

where wA is defined in (2.30). Let us study ũ on the lines z = µt . For � on the right-hand
side of (2.30), using (3.3)–(3.5) we obtain

�(x, y) = [e−btf1 ebtf2], b := (a − 1)−1τµ + (a + 1)−1τµ. (3.7)

Hence from (2.29) and (3.7) it follows that

S(x, y) = (a + a)−1�(x, y)�(x, y)∗ = (a + a)−1(e−(b+b)t |f1|2 + e(b+b)t |f2|2). (3.8)

Without loss of generality we can assume b + b � 0. In view of (2.30), (3.7) and (3.8) for
b + b > 0 we have

lim
t→∞ wA(x, y, 0) =

[
1 0
0 −a/a

]
, lim

t→−∞ wA(x, y, 0) =
[−a/a 0

0 1

]
. (3.9)

The asymptotics differs on the line 
0 = {z : z = µt}, where b + b = 0, i.e.,

µ = iτc

(a − 1)(a + 1)
, c = c �= 0. (3.10)

Namely, on 
0 we have

wA(x, y, 0) = 1

a

[
α β(t)

β(t), −α

]
, α = a|f2|2 − a|f1|2

|f1|2 + |f2|2 , (3.11)

β(t) = − (a + a)f1f2

|f1|2 + |f2|2 e2bt , (b = −b). (3.12)

Similar to the ‘line solutions’ studied, in particular, for KP (see, for instance, [1, 24, 29])
the asymptotics of our solution on 
0 essentially differs from asymptotics along other lines.
Note also that only on 
0 the non-diagonal entries of ũ do not decay exponentially to zero (see
figure 1 for the case τ = 2i, a = 1 + i, f1 = 1, f2 = 2i).

Example 3.2. This example deals with the case n = 2, A = diag{a1, a2}, where diag means
diagonal matrix, ak �= ±1, and σ(A)

⋂
σ(−A∗) = ∅. According to (3.3)–(3.5) on a line

z = µt we have

�(x, y) = [e−Btf1 eBtf2], B = diag{b1, b2},
bk := (ak − 1)−1τµ + (ak + 1)−1τµ, (k = 1, 2).

(3.13)
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Figure 1. Asymptotics of |̃u21(x, y)|.

Supposing b1 + b1 �= 0 we choose the sign of µ so that b1 + b1 > 0. Assume that b2 + b2 > 0
too (the case b2 + b2 < 0 can be treated similar). Let the entries f12 and f22 of f2 be nonzero
and let a1 �= a2. Then in view of (2.29) and (3.13) we easily obtain

�(x, y) =
[

0 eb1t f12

0, eb2t f22

]
+ o(1), t → ∞, (3.14)

S(x, y)−1 = 1

det S(x, y)





 |f22|2

a2+a2
e(b2+b2)t − f12f22

a1+a2
e(b1+b2)t

− f22f12

a2+a1
e(b2+b1)t |f12|2

a1+a1
e(b1+b1)t


 + o(1)


 , (3.15)

det S(x, y) = (1 + o(1))
|f12f22|2(|a1|2 + |a2|2 − a1a2 − a2a1)

(a1 + a1)(a2 + a2)|a1 + a2|2 e(b1+b1+b2+b2)t . (3.16)

After some calculations the asymptotics of wA(x, y, 0) = I2 − �∗S−1A−1� follows from
(3.14)–(3.16):

lim
t→∞ wA(x, y, 0) =

[
1 0
0 a1 a2

a1a2

]
. (3.17)

If in the last example, where A is diagonal, we put a1 = a2 = a and det �(0, 0) �= 0, we
easily obtain a trivial answer wA(x, y, 0) = −(a/a)I2. The case, where A is a Jordan box, is
far more interesting.

Example 3.3. Suppose now that

n = 2, A =
[
a 1
0 a

]
, a �= ±1, a �= −a. (3.18)

It follows that

τµ(A + I2)
−1 + τµ(A − I2)

−1 = bI2 + cR, R =
[

0 1
0 0

]
, (3.19)

where b is given by the second relation in (3.7) and

c = −((a − 1)−2τµ + (a + 1)−2τµ). (3.20)

According to (3.3)–(3.5) and (3.19) on a line z = x + iy = µt we have

�(x, y) = [e−bt (I2 − ctR)f1, ebt (I2 + ctR)f2]. (3.21)
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In view of (3.18) identity (2.29) takes the form

(a + a)S +

[
s21 + s12 s22

s22 0

]
= ��∗, (3.22)

where skj are the entries of S. From (3.21) and (3.22) it is immediate that

s22(x, y) = (a + a)−1(e−(b+b)t |f21|2 + e(b+b)t |f22|2), (3.23)

s12(x, y) = s21(x, y) = (a + a)−1

× (e−(b+b)t (f11 − ctf21)f21 + e(b+b)t (f12 + ctf22)f22 − s22(x, y)), (3.24)

s11(x, y) = (a + a)−1(e−(b+b)t |f11 − ctf21|2 + e(b+b)t |f12 + ctf22|2 − s12(x, y) − s21(x, y)).

(3.25)

Similar to example 3.1 assume b + b � 0. Let f21 �= 0 and f22 �= 0 for simplicity. First
we shall treat the lines, where b + b > 0. Taking into account (3.23)–(3.25) using standard
calculations we derive

det S(x, y) = (1 + o(1))(a + a)−4 e2(b+b)t |f22|4. (3.26)

One can easily see that

�∗S−1A−1� = a−2(det S)−1�∗
[

s22 −s12

−s21 s11

] [
a −1
0 a

]
�. (3.27)

From (3.23)–(3.27) it follows that

�∗S−1A−1� →
[

0 0
0 a−2(a2 − a2)

]
, when t → ∞, i.e.,

lim
t→∞ wA(x, y, 0) =

[
1 0
0 (a−1a)2

]
, for b + b > 0. (3.28)

As in example 3.1, the asymptotics of wA(x, y, 0) differs on the line 
0, where b + b = 0. For
this line using (3.23)–(3.25) we obtain

det S = 4(a + a)−2|cf21f22|2t2 + k1t + k0. (3.29)

Taking also into account (3.27) we have

�∗S−1A−1� = 4a−1(a + a)−1|cf21f22|2(det S)−1

[
t2 + O(t) O(t)

O(t) t2 + O(t)

]
. (3.30)

Formulae (3.29) and (3.30) imply

lim
t→∞ wA(x, y, 0) = −(a/a)I2, for b + b = 0. (3.31)

Compare equalities (3.28) and (3.31). We would like to mention here that the extended
solution w̃ = wAu has the pole of order two at λ = a:

w̃(t, λ) = (a − λ)−2(det S(t))−1�(t)∗
[

s22(t)

−s21(t)

]
[e−btf21 ebtf22] + O

(
(a − λ)−1

)
.

Our next example deals with an arbitrary m and a seed solution somewhat more general than
that given in (3.1). Namely we put

u(x, y) = ezD−zD∗ ∈ U(m), D = diag{d1, d2, . . . , dm}. (3.32)
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It follows that

q(x, y) = −D∗, Q(x, y) = −D. (3.33)

Example 3.4. As in example 3.1, suppose n = 1, A = a (a �= ±1, a �= −a), fk �= 0. Here
1 � k � m. Then, on a line z = µt taking into account (2.6) and (2.29) we obtain

�(x, y) = [e−b1t f1 e−b2t f2 · · ·], bk := (a − 1)−1dkµ + (a + 1)−1dkµ, (3.34)

S(x, y) = (a + a)−1
m∑

k=1

|fk|2 e−(bk+bk)t . (3.35)

In the generic situation there exists only one natural number k+ and only one natural number
k− such that


bk+ = min
1�k�m


bk, 
bk− = max
1�k�m


bk. (3.36)

Then according to (3.34) and (3.36) we have

lim
t→∞ wA(x, y, 0) = diag{1, . . . , 1,−a/a, 1, . . .}, where −a/a is the k+th entry,

lim
t→−∞ wA(x, y, 0) = diag{1, . . . , 1,−a/a, 1, . . .}, where −a/a is the k−th entry.
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